
@vitessio

Deepthi Sigireddi

VTOrc
How Vitess achieves Consensus with Replicated MySQL

@vitessio

Technical Lead
Vitess

@ATechGirl
@atechgirl.hachyderm.io

Deepthi Sigireddi

@vitessio

Vitess Overview

@vitessio

What is Vitess?
MySQL
compatible

Massively
Scalable

Highly
Available

Data
Durability

Features

MySQL compatibility
○ Compatible with popular frameworks

Management features
○ Connection Pooling
○ Online schema changes
○ Query consolidation

Features

High Availability
○ Failure detection and failover

Data Durability
○ Replication

Scalability through Sharding
Data migrations, views, roll-ups, CDC

VITESS.IO

Architecture Summary

@vitessio

Consensus in Vitess

@vitessio

Problem Statement

● How to recover from MySQL failures
● While guaranteeing

○ High availability
○ Data Durability
○ Minimal downtime / recovery time

@vitessio

Design Principles

● Engineering approach
● Single leader system
● Fulfill requests while respecting durability policy
● Leader election process

○ Planned versus unplanned
● Forward Progress
● Race conditions

Concepts
Keyspace

○ Logical database
Shard

○ Slice of data
Cell

○ Failure Domain

Shard topology

A replicated database cluster with
primary and replicas

VTTablet

Each MySQL server is assigned a vttablet

- A daemon/sidecar
- Controls the mysqld process
- Interacts with the mysqld server
- Typically on same host as mysqld

@vitessio

VTOrc

● Rewrite of openark/orchestrator
● Agent that detects and repairs failures
● Durability through Replication

○ Policies allow trade-offs
● High availability through failover

○ Planned / unplanned leader
election

@vitessio

Leader Election

● Revocation
● Election
● Propagation

@vitessio

Planned Leader Election

● Revocation
○ Current leader is asked to step

down
● Leader selection

○ A new leader is chosen
● Propagation

○ Completed requests

@vitessio

Unplanned Leader Election

● Revocation
○ Reach “m” followers

● Leader selection
○ A new leader is chosen
○ Based on durability policy

● Propagation
○ Completed requests

@vitessio

Revocation and Quorum

● What is “m”?
● How do we know we have reached sufficient tablets to

guarantee safety?

● Intersecting Quorum
● Quorum for accepting transactions
● Quorum for revocation

@vitessio

Durability Policies & Semi-Sync
● Durability Policy

○ Who can be the primary?
○ How many semi-sync ACKs

required for each primary?
○ Who can send these ACKs?

● Increased Flexibility
○ None - Default policy
○ Semi-Sync
○ Cross-Cell
○ Custom

ReplicaPrimaryUser

ReplicaPrimaryUser

Execute

Add to Relay log

Commit

Wait for ACK

Write

Read from Binlog

Semi-Sync ACK

Success

@vitessio

● Durability Policy - semi-sync
○ Any replica can be the primary

○ 1 semi-sync ACK required

○ Any replica can send the ACK

Semi-Sync Durability

zone1-100
Replica

zone1-101
Replica

zone1-102
Replica

zone1-103
Replica

@vitessio

Revocation

● Quorums for Accepting Transactions
○ [(100, 101), (100, 102), (100, 103)]
○ [(101, 100), (101, 102), (101, 103)]
○ [(102, 100), (102, 101), (102, 103)]
○ [(103, 100), (103, 101), (103, 102)]

● Quorums for Revocations -
○ [100, 103] ❌
○ [100, 102, 103] ✅
○ [100, 101, 102, 103] ✅
○ [101] ❌

zone1-100
Replica

zone1-101
Replica

zone1-102
Replica

zone1-103
Replica

@vitessio

Revocation and Quorum

❌

@vitessio

Revocation and Quorum

✅

@vitessio

Cross-Cell Durability

zone2-200
Replica

zone2-201
Replica

zone2-202
Replica

zone1-300
Replica

● Cell = Failure Domain

● Durability Policy - cross-cell
○ Any replica can be the primary

○ 1 semi-sync ACK required

○ Only a replica from a different cell
can send an ACK

@vitessio

Revocation

● Quorums for Accepting Transactions
○ [(300, 200), (300, 201), (300, 202)]
○ [(200, 300)]
○ [(201, 300)]
○ [(202, 300)]

● Quorums for Revocations -
○ [200, 201] ❌
○ [300, 202, 201] ✅
○ [300, 201] ✅
○ [300, 200, 201, 202] ✅

zone2-200
Replica

zone2-201
Replica

zone2-202
Replica

zone1-300
Replica

@vitessio

More Failure Scenarios

● Primary is Read-Only
● Replica’s replication is stopped
● Replica is writable
● Semi-sync settings are incorrect
● Shard has no primary
● Primary is replicating from a different tablet
● ErrantGTID detection

@vitessio

Future Work

● ErrantGTID handling
○ Uncommitted transactions when server went down
○ Committed when server comes back
○ Propagate with new GTID??
○ Rewind??

● Reduce / remove dependency on external locks

@vitessio

Blog Post Series
● https://planetscale.com/blog/blog-series-consensus-algorithms-at-scale-part-1

Documentation
● https://vitess.io
● https://vitess.io/docs/16.0/reference/vtorc/
● https://vitess.io/docs/16.0/user-guides/configuration-basic/vtorc/

Community
● https://github.com/vitessio/vitess
● https://vitess.io/slack

Resources

https://planetscale.com/blog/blog-series-consensus-algorithms-at-scale-part-1
https://vitess.io/docs/16.0/reference/vtorc/
https://vitess.io/docs/16.0/reference/vtorc/
https://vitess.io/docs/16.0/user-guides/configuration-basic/vtorc/

@vitessio

Q & A

@vitessio

Thank you!

