MySQL and Hadoop: Big Data Integration

Shubhangi Garg & Neha Kumari
MySQL Engineering
Agenda

- Design rationale
- Implementation
- Installation
- Schema to Directory Mappings
- Integration with Hive
- Roadmap
- Q&A
Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decision. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Big Data: Strategic Transformation

Reporting → Analytics
Rear-View Mirror → Predict / Explore
Some Data → Big Data
CIO & Business Priority

- Web recommendations
- Sentiment Analysis
- Marketing Campaign Analysis
- Customer Churn Modeling
- Fraud Detection
- Research and Development
- Risk Modeling
- Machine Learning

90% with Pilot Projects at end of 2012

Poor Data Costs 35% in Annual Revenues

10% Improvement in Data Usability Drives $2bn in Revenue
CIO & Business Priority

<table>
<thead>
<tr>
<th>US HEALTH CARE</th>
<th>MANUFACTURING</th>
<th>GLOBAL PERSONAL LOCATION DATA</th>
<th>EUROPE PUBLIC SECTOR ADMIN</th>
<th>US RETAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase industry value per year by</td>
<td>Decrease dev., assembly costs by</td>
<td>Increase service provider revenue by</td>
<td>Increase industry value per year by</td>
<td>Increase net margin by</td>
</tr>
<tr>
<td>$300 B</td>
<td>−50%</td>
<td>$100 B</td>
<td>€250 B</td>
<td>60+%</td>
</tr>
</tbody>
</table>

“In a big data world, a competitor that fails to sufficiently develop its capabilities will be left behind.”

McKinsey Global Institute
Analysts on Big Data

“The area of greatest interest to my clients is Big Data and its role in helping businesses understand customers better.”

Michael Maoz, Gartner

“Big Data Will Help Shape Your Market’s Next Big Winners.”

Brian Hopkins, Forrester

“Almost half of IT departments in enterprises in North America, Europe and Asia-Pacific plan to invest in Big Data analytics in the near future.”

Tony Baer, Ovum

“CIOs will need to be realistic about their approach to 'Big Data' analytics and focus on specific use cases where it will have the biggest business impact.”

Philip Carter, IDC
What Makes it Big Data?
PROBLEM: Exceeds limits of conventional systems

VOLUME

VELOCITY

VARIETY

VARIABILITY
What’s Changed?

• Enablers
 - Digitization – *nearly* everything has a digital heartbeat
 - Now practical to store much larger data volumes (distributed file systems)
 - Now practical to process much larger data volumes (parallel processing)

• Why is this different from BI/DW?
 - Business formulated questions to ask upfront
 - Drove what was data collected, data model, query design

Big Data Complements Traditional Methods:
Enables what-if analysis, real-time discovery
Unlocking Value of ALL Data

Big Data:
Decisions based on all your data

- Video and Images
- Social Data
- Machine-Generated Data
- Documents

Traditional Architecture:
Decisions based on database data

- Transactions
- MySQL
- SAP
Why Hadoop?

- Scales to thousands of nodes, TB of structured and unstructured data
 - Combines data from multiple sources, schemaless
 - Run queries against all of the data

- Runs on commodity servers, handle storage and processing

- Data replicated, self-healing

- Initially just batch (Map/Reduce) processing
 - Extending with interactive querying, via Apache Drill, Cloudera Impala, Stinger etc.
MySQL + Hadoop: Unlocking the Power of Big Data

50% of our users integrate with MySQL*

Download the MySQL Guide to Big Data:

*Leading Hadoop Vendor
Leading Use-Case, On-Line Retail

Users

Browsing

Recommendations

Social media updates
Preferences
Brands “Liked”

Web Logs:
- Pages Viewed
- Comments Posted

Telephony Stream

Profile, Purchase History

My SQL

Recommendations
MySQL Applier for Hadoop: Big Data Lifecycle

DECIDE
ACQUIRE
ANALYZE
ORGANIZE
MySQL in the Big Data Lifecycle

ACQUIRE

MySQL

ORGANIZE

MySQL Applier

ANALYZE

MySQL

DECIDE

BI Solutions

hadoop
Apache Sqoop

- Apache TLP, part of Hadoop project
 - Developed by Cloudera
- Bulk data import and export
 - Between Hadoop (HDFS) and external data stores
- JDBC Connector architecture
 - Supports plug-ins for specific functionality
- “Fast Path” Connector developed for MySQL
Importing Data

1. Gather Metadata
2. Sqoop Import
3. Transactional Data
4. Sqoop Job
5. Hadoop Cluster
6. HDFS Storage
7. Submit Map Only Job
8. Importing Data
Ensure Proper Design

- **Performance impact:** bulk transfers to and from operational systems
- **Complexity:** configuration, usage, error reporting
MySQL Applier for Hadoop

Real-Time Event Streaming
MySQL to HDFS
New: MySQL Applier for Hadoop

- Real-time streaming of events from MySQL to Hadoop
 - Supports move towards “Speed of Thought” analytics
- Connects to the binary log, writes events to HDFS via libhdfs library
- Each database table mapped to a Hive data warehouse directory
- Enables eco-system of Hadoop tools to integrate with MySQL data
- See dev.mysql.com for articles
- Available for download now
 - labs.mysql.com
MySQL Applier for Hadoop: Basics

- Replication Architecture

![Diagram of Replication Architecture]

- Master
 - Session
 - Session
 - Session
 - Binary Log
 - Dump

- Slave(s)
 - Database
 - 1/O
 - SQL
 - Relay Log

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. | Insert Information Protection Policy Classification from Slide 12
MySQL Applier for Hadoop: Basics

▪ What is MySQL Applier for Hadoop?
 – An utility which will allow you to transfer data from MySQL to HDFS.
 – Reads binary log from server on a real time basis
 – Uri for connecting to HDFS: `const *uri= “hdfs://user@localhost:9000”;`
 – Network Transport: `const *uri= “mysql://root@127.0.0.1:3306”;`

▪ Decode binary log events
 – Contain code to decode the events
 – Uses the user defined content handler, and if nothing is specified then the default one in order to process events
 – Cannot handle all events

▪ Event Driven API
MySQL Applier for Hadoop: Basics

- Event driven API: Content Handlers
MySQL Applier for Hadoop: Implementation

• Replicates rows inserted into a table in MySQL to Hadoop Distributed File System
• Uses an API provided by libhdfs, a C library to manipulate files in HDFS
• The library comes pre-compiled with Hadoop Distributions
• Connects to the MySQL master (or reads the binary log generated by MySQL) to:
 • Fetch the row insert events occurring on the master
 • Decode these events, extracting data inserted into each field of the row
 • Separate the data by the desired field delimiters and row delimiters
 • Use content handlers to get it in the format required
 • Append it to a text file in HDFS
Installation: Pre-requisites

- Hadoop Applier package from http://labs.mysql.com
- Hadoop 1.0.4 or later
- Java version 6 or later (since Hadoop is written in Java)
- libhdfs (it comes pre compiled with Hadoop distros)
- Cmake 2.6 or greater
- Libmysqlclient 5.6
- Openssl
- Gcc 4.6.3
- MySQL Server 5.6
- FindHDFS.cmake (cmake file to find libhdfs library while compiling)
- FindJNI.cmake (optional, check if you already have one):

 $locate FindJNI.cmake

- Hive (optional)
Installation: Steps

- Download a copy of Hadoop Applier from http://labs.mysql.com
- Download a Hadoop release, configure dfs to set the append property true
 - (flag dfs.support.append)
- Set the environment variable $HADOOP_HOME
- Ensure that 'FindHDFS.cmake' is in the CMAKE_MODULE_PATH
- libhdfs being JNI based, JNI header files and libraries are also required
- Build and install the library 'libreplication', using cmake
- Set the CLASSPATH

 $export PATH= $HADOOP_HOME/bin:$PATH
 $export CLASSPATH= $(hadoop classpath)
- Compile by the command “make happlier” on the terminal.
- This will create an executable file in the mysql2hdfs directory in the repository
Integration with HIVE

- Hive runs on top of Hadoop. Install HIVE on the hadoop master node.
- Set the default datawarehouse directory same as the base directory into which Hadoop Applier writes.
- Create similar schema's on both MySQL & Hive.
- Timestamps are inserted as first field in HDFS files.
- Data is stored in 'datafile1.txt' by default.
- The working directory is base_dir/db_name.db/tb_name.

<table>
<thead>
<tr>
<th>SQL Query</th>
<th>Hive QL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREATE TABLE t (i INT);</td>
<td>CREATE TABLE t (time_stamp INT, i INT)</td>
</tr>
<tr>
<td>[ROW FORMAT DELIMITED] STORED AS TEXTFILE;</td>
<td>[ROW FORMAT DELIMITED] STORED AS TEXTFILE;</td>
</tr>
</tbody>
</table>
Mapping Between MySQL and HDFS Schema

MySQL

<table>
<thead>
<tr>
<th>col1</th>
<th>col2</th>
<th>.....</th>
</tr>
</thead>
<tbody>
<tr>
<td>data1</td>
<td>data2</td>
<td>.....</td>
</tr>
<tr>
<td>data3</td>
<td>data4</td>
<td>.....</td>
</tr>
</tbody>
</table>

table1/datafile1.txt

HIVE

Data warehouse directory

- database1.db
 - table1
 - datafile1.txt
- database2.db
 - table2
 - datafile1.txt
 - table3
 - datafile1.txt
 - table4
 - datafile1.txt
Hadoop Applier in Action

- Run hadoop dfs (namenode and datanode)
- Start a MySQL server as master with row based replication
- For ex: using mtr:

  ```bash
  $MySQL-5.6/mysql-test$/mtr --start --suite=rpl --mysqlid=-binlog_format='ROW' --mysqlid=-binlog_checksum=NONE
  ```
- Start hive (optional)
- Run the executable ./happlier

  ```bash
  $./happlier [mysql-uri] [hdfs-uri]
  ```
- Data being replicated can be controlled by command line options.

  ```bash
  $./happlier --help
  ```

Find the demo here:
http://www.youtube.com/watch?v=mZRAtCu3M1g

<table>
<thead>
<tr>
<th>Options</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>-r, --field-delimiter=DELIM</td>
<td>String separating the fields in a row</td>
</tr>
<tr>
<td>-w, --row-delimiter=DELIM</td>
<td>String separating the rows of a table</td>
</tr>
<tr>
<td>-d, --databases=DB_LIST</td>
<td>Import entries for some databases, optionally include only specified tables.</td>
</tr>
<tr>
<td>Ex: d=db_name1-table1-table2,dbname2-table1,dbname3</td>
<td></td>
</tr>
<tr>
<td>-f, --fields=LIST</td>
<td>Import entries for some fields only in a table</td>
</tr>
<tr>
<td>-h, --help</td>
<td>Display help</td>
</tr>
</tbody>
</table>
Future Road Map – Under Consideration

- Support all kinds of events occurring on the MySQL master
- Support binlog checksums and GTID's, the new features in MySQL 5.6 GA
- Considering support for DDL's
- Considering support for updates and deletes
- Leave comments on the blog!

http://innovating-technology.blogspot.co.uk/2013/04/mysql-hadoop-applier-part-2.html
MySQL in the Big Data Lifecycle

- ANAYLZE
- DECIDE

Analyze
Export Data
Decide
Analyze Big Data

- Oozie
- Hive
- Mahout
- Hortonworks
- Cloudera
- MapR Technologies
Summary

• MySQL + Hadoop: proven big data pipeline
• Real-Time integration: MySQL Applier for Hadoop
• Perfect complement for Hadoop interactive query tools

Integrate for Insight
Next Steps

Read the DevZone
http://dev.mysql.com/tech-resources/articles/mysql-hadoop-applier.html

Try Out Applier for Hadoop
http://labs.mysql.com

Take the Dev Quick Poll
https://dev.mysql.com/tech-resources/quickpolls/
Thank you!