

MySQL Reference Architectures
for Security

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

2

Table of Contents
Introduction ... 4

Database Security .. 4

Key Security Considerations .. 4

Cyber Attacks, Data Theft, and Data Destruction ... 6

Malicious Attack Tactics .. 6

Risk Mitigation ... 6

Examples of Security Risks and Tasks .. 8

The Critical Threat of Ransomware ... 8

Mitigating Ransomware Data Destruction ... 8

Mitigating Data Theft in Ransomware Attacks ... 9

Government & Industry Regulations .. 9

Data Encryption ... 9

Data Access Controls ... 10
Data Access Auditing .. 10

Database Security Assessment .. 10

Evaluate and Assess your Database Configuration ... 11

Risk and Security Assessment Tools for MySQL ... 12
CIS Benchmark for MySQL Enterprise Edition .. 12
DISA STIG for MySQL Enterprise Edition .. 13
MySQL Security Guidelines .. 14

Software Upgrade Management .. 14

Protecting Sensitive Data ... 14

Authentication ... 15
Strong Passwords .. 16
Centralized User Management ... 16
Enforcing Security for Business Users ... 18
Securing Database Administrator (DBA) Accounts .. 18
Protecting application accounts ... 19
Controlling Database Access ... 20
Leveraging Roles for Efficient Privilege Management ... 20
Simplifying User Management with Database Roles .. 21
Understanding MySQL Privilege Levels ... 21

The Persistent Threat of SQL Injection ... 22
Strategies for Mitigating SQL Injection Attacks .. 23
MySQL Enterprise Firewall: Database-Resident SQL Protection ... 23

The Importance of Sensitive Data Masking ... 24

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

3

Static Data Masking Use Cases: ... 25
Data Encryption and Key Management ... 25

The Critical Role of Encryption .. 25
Prioritize Encryption to Protect Data Beyond Database Controls .. 26
Encrypting MySQL Database Connections (Data in Motion) ... 26
Transparent Data Encryption .. 26
TDE's Two-Tier Key Architecture ... 27
Encrypt Data-at-rest Using Transparent Data Encryption ... 27
Centrally Manage Encryption Keys Using Key Vaults .. 28

Importance of Database Activity Monitoring .. 28
Prioritize Effective Activity Monitoring ... 29
Strategic Database Auditing ... 29
Effective Audit Data Management & Utilization .. 29

Putting it All Together - MySQL Reference Architectures for Security 30
Tailored Security Implementation ... 31
Tiered Security Measures for Data Protection .. 32

Conclusion .. 33

Additional Resources ... 33

Disclaimer

This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. This
document is not part of your license agreement, nor can it be incorporated into any contractual agreement with Oracle or its
subsidiaries or affiliates.

This document is for informational purposes only and is intended solely to assist you in planning for the implementation and upgrade
of the product features described. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, timing, and pricing of any features or functionality described in this
document remain at the sole discretion of Oracle

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

4

Introduction

This whitepaper focuses on protecting your MySQL data. Your databases contain valuable
and often sensitive information, including intellectual property, personal data, and
financial records. Whether you're a data owner, security administrator, or simply
interested in best practices, this document outlines key elements of a successful
database security program, emphasizing goal-oriented strategies and efficient task
management.

Security projects are typically driven by three key factors: regulatory compliance, the
threat of malicious activity (particularly ransomware), and the demand for business agility.
Nearly every organization faces multiple regulatory mandates. However, the fear of
cybercrime, especially ransomware, now dominates boardroom discussions. This
whitepaper lays the groundwork for database security by outlining common regulatory
compliance goals and the essential steps to protect your data.

Database Security

Today's complex systems are vulnerable to small errors, which attackers readily exploit.
Regularly checking your database security against established rules and best practices is
crucial. Failing to implement basic security measures can expose sensitive personal data,
damaging your reputation and finances. Consistent database strengthening and scanning
are essential. Regulations like GDPR, PCI DSS, DORA, HIPAA, and DISA STIG mandate
security checks. DISA STIG provides detailed requirements, while others offer broader
guidelines. Security organizations like CIS also offer valuable advice. This chapter
demonstrates how MySQL features and tools can help you identify, organize, and resolve
security issues, ensuring your databases remain secure.

Key Security Considerations

• Sensitive Data Identification:
o Effective data protection begins with understanding what sensitive data you

have and where it resides.
o Knowing the type, volume, and location of sensitive data allows you to

implement appropriate security controls.

• Authentication:
o Secure database access begins with verifying user identities

(authentication). Your authentication strategy safeguards users and data
from unauthorized access.

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

5

o Manage user accounts directly within the database or via external identity
management systems.

• Authorization:
o Controlling user actions (authorization) is crucial for database security.
o A strong authorization strategy prevents errors, misuse, and attacks.
o Manage user permissions locally or through centralized identity services.

• Separation of Duties:

o Strong security controls for insider and privileged accounts are vital.
o Since compromised privileged accounts are a primary attack vector for

database breaches, and rogue users can cause substantial harm,
implement separation of duties and least privilege to reduce potential
losses.

o Though consolidating administrative functions may seem convenient,
dividing responsibilities and maintaining granular privilege control
significantly improves security.

• SQL Injection:
o Although developers have been educated on SQL injection prevention for

years, it remains a common and dangerous attack vector.
o Database's SQL Firewalls provide a crucial layer of defense against SQL

injection attacks, supplementing application-level security.

• Data Masking:
o Protecting sensitive data, complying with regulations, and securely providing

data for various uses—development, testing, analytics, research, and
collaboration—require methods like data masking, de-identification, and
substitution.

o Data masking effectively balances data usability and security, allowing
organizations to work with data safely and efficiently.

• Data Encryption and Key Management:
o Encryption is the most effective defense against database bypass attacks,

where attackers steal data without logging in.
o This includes capturing network traffic, accessing database files via the

operating system, or stealing backups.
o Protect data in transit and at-rest and address secure encryption key

management.

• Database Activity Auditing:
o For effective incident investigation, malicious behavior detection, and

regulatory compliance, database activity monitoring is vital.

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

6

o This can be achieved through MySQL event auditing.

Cyber Attacks, Data Theft, and Data Destruction
Malicious Attack Tactics
With cybersecurity incidents escalating daily, organizations risk losing sensitive personal
and intellectual property data. Stolen data fuels financial and political gain. Since
databases are the core of data storage, their security is critical.

 Types of personal data

Hackers employ various tactics, including (approximate high to low frequency):

• Gaining access via password guessing or poor credential management.
• Exploiting application weaknesses like SQL injection.
• Bypassing access controls with unpatched systems or misconfigurations.
• Stealing administrator or application user credentials.
• Encrypting data or stealing keys for ransomware attacks.
• Escalating privileges through vulnerable applications.
• Finding sensitive data in unprotected areas.
• Using unprotected systems as attack bridges.
• Targeting less-protected development and test data copies.
• Accessing unencrypted database files and backups.
• Creating rogue user accounts for reconnaissance and privilege escalation.

Risk Mitigation

The most common security risks are:

1. Insecure configuration and configuration drift
2. Unpatched and out-of-date systems
3. Lack of a consistently enforced security policy
4. Lack of visibility into sensitive data placement and quantity

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

7

5. Overprivileged database users and administrators
6. Weak authentication and shared accounts
7. SQL Injection vulnerabilities and insecure application design
8. Trusting vulnerable networks
9. Insufficient or inefficient monitoring and auditing
10. Sensitive data proliferation to non-production databases
11. Unprotected servers and database backups
12. Insecure encryption keys and secrets

To mitigate the risk of malicious attacks, implement a multi-layered approach that focuses
on the following 4 areas:

1. Security Assessment
2. Access Controls
3. Monitoring activity
4. Data Theft Protections

Category Goal Task Threat
Addressed

Assess
security
posture

Ensure systems do not
deviate from their
approved security
baseline

Monitor databases for
configuration changes
that introduce risk

Insecure
configuration

Monitor
user
activities

Detect inappropriate
activity by privileged
users

Audit all DBA activity Insufficient or
inefficient
monitoring and
auditing

Protect
data
against
theft

Scramble sensitive data
in test and development
environments

Scramble sensitive
data in test and
development
environments

Unprotected
servers and
database
backups

Control
access to
data

Strengthen user
authentication to
prevent compromise of
accounts

Implement multifactor
authentication for the
database

Weak
authentication
and shared
accounts

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

8

Examples of Security Risks and Tasks

Insecure Configuration – check and fix using:

• CIS Benchmark for MySQL Enterprise Edition
• DISA STIG for MySQL Enterprise Edition
• MySQL Secure Guidelines

Over-privileged users – implement:

• SSO (Single Sign On)
• MFA (Multifactor Authentication)
• Privilege Analysis

Insufficient Monitoring – deploy:

• Enterprise Audit
• Telemetry Traces, Metrics, and Logging
• Oracle Enterprise Manager for MySQL

Unprotected data – use:

• Advanced Encryption
• Key Ring and TDE
• Data Masking
• High Availability and Disaster Recovery – InnoDB Cluster, Replica Set, Cluster Set

The Critical Threat of Ransomware

Ransomware is widely recognized by cybersecurity authorities (ENISA, CISA, NCSC) as a
leading threat to organizations and infrastructure. It's a primary income source for
cybercriminals and a tool used by nation-states for disruption, distraction, and funding.

The simplest definition of ransomware is a type of malicious software (malware) that
encrypts a victim’s files and offers to provide a decryption key in return for some form of
compensation (usually monetary)

 Mitigating Ransomware Data Destruction

Ransomware's "simple" denial-of-service, encrypting data files, leads to complex
recovery. Beyond database restoration, it requires network malware removal, OS
reinstallation, and storage reconnection.

Data consistency across databases, often backed up at different times, is crucial.

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

9

Mitigation requires:

• Immutable Backups: Protect backups from ransomware destruction.
• Synchronized Recovery: Restore to a consistent point in time – ideally with zero

data loss.
• Recovery Infrastructure: Treat recovery as a disaster recovery scenario. Utilize

warm sites with MySQL Cluster, Replica-Set, and Cluster-Set, replicate data to
cloud-based secure enclaves, or recovery clean rooms for rapid restoration.

A key ransomware evolution is the focus on data theft. Rather than destruction, attackers
now extort victims with threats of data release, a shift in monetization from typical data
breaches.

Mitigating Data Theft in Ransomware Attacks

Ransomware typically steals data by scraping files, not directly targeting databases.
Therefore, Transparent Data Encryption (TDE) is generally effective. However, protect
encryption keys in off-server Key Vaults like Oracle Key Vault, OCI Vault to prevent them
from being compromised during the same attack.

Government & Industry Regulations

To navigate the numerous government and industry security regulations (note: this is not
legal advice; consult your legal department), we advise proactively establishing a security
control framework. Despite variations in reporting and assessment, the technical controls
required by most regulations share key similarities, including:

• Data Encryption
• Data Access Controls
• Data Access Auditing

Data Encryption
Encryption uses cryptographic algorithms to make data unreadable, ensuring access only
with the correct decryption key. This is a vital technical control required by most
regulations. Importantly, secure management of encryption keys is also necessary. While
some consider encryption a type of access control, it's commonly treated as a separate
security practice with its own unique advantages and challenges.

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

10

Data Access Controls
Access control defines who and when an account can access a database or its objects. As
the broadest technical control, it includes authentication, session initiation, object
visibility, and granular access to data at the row or column level.

Data Access Auditing
Auditing records system events, capturing action performed (insert, update, execute, etc.),
date and time of the action, user accounts (database and OS), application used for
connection, and source of the connection (IP address/hostname). Auditing allows for post-
incident analysis, providing data for forensic investigation and compliance reporting.
Unlike access control, auditing does not block unauthorized actions but supports breach
investigations and troubleshooting.

As you can see in this table the requirements generally fall into the above 3 main
categories.

Database Security Assessment

Databases, with their complex configurations, are prime targets for security breaches.
Secure systems are essential, as demonstrated by recent data losses. Human error and
malicious exploits of misconfigurations jeopardize valuable data. Exposing sensitive
information through inadequate security controls damages reputation and finances.
Regulations like GDPR and PCI DSS necessitate regular security assessments. Regularly
scan and remediate database vulnerabilities, considering best practices, regulations, and
organizational standards. This chapter outlines how Oracle Database security solutions
can quickly assess, categorize, and provide recommendations for database security.

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

11

Evaluate and Assess your Database Configuration

Cyber attackers invest considerable time in pre-attack reconnaissance. They employ
automated tools to discover databases, identify open ports and vulnerabilities, and
execute application, SQL injection, and brute-force password attacks. Following this
probing phase, they pinpoint weaknesses and devise their attack strategy, essentially
performing a security posture assessment to target sensitive data.

Some common questions attackers try to answer while probing your databases:

• What version of the database is running? – Identifying outdated versions with known
vulnerabilities.

• Are default or weak credentials in use? – Exploiting accounts with weak or
unchanged passwords.

• Which privileged users exist? – Escalating access by compromising high-privilege
accounts.

• Is auditing enabled? – Determining whether actions will be logged and monitored.
• Is the data encrypted? – Assessing if they can steal raw data from storage or

backups.
• Is there a copy of this database that is less likely to be audited? – Finding the least

risky approach to data

To effectively secure your databases, adopt an attacker's mindset. Here are some key
considerations for protecting your databases:

• Almost all databases hold sensitive data, but the level of importance of individual
data attributes may differ. For example, a customer’s date of birth may be more
sensitive than their email address. It is essential to find out which databases
contain what type of sensitive data so that controls can be implemented
accordingly.

• Common points of attack against the database include unpatched systems, poor

application design, weak user credentials, excessive privilege grants, lack of a
trusted path to data, separation of duties, encryption, and inadequate auditing.

• Security configuration parameters are tightly related to how the database behaves
and require understanding the parameters, what they do, the impact of changing
them, and their dependencies.

• Not all database users are equal. Apart from the DBAs, several other
actors/processes interact with your data through database user accounts—the

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

12

application, application administrators, security administrators, and others,
including service accounts, batch programs, etc. Identifying the different types of
database users and the activities they need to execute on the database helps you
properly manage privileges and roles and implement the principle of least privilege.

• Not all databases are created equal. Some databases may be more business-
critical or contain more sensitive or highly regulated data. Your investment in
security controls (which could be in tools, time, or operational resource
commitment) is usually commensurate with the criticality or sensitivity of the
database.

Risk and Security Assessment Tools for MySQL

CIS Benchmark for MySQL Enterprise Edition
The Center for Internet Security (CIS) provides consensus-based configuration
benchmarks for various software and hardware systems. The CIS Benchmark for MySQL
Enterprise Edition offers prescriptive guidance on securely configuring MySQL databases.
These benchmarks are designed to help organizations reduce their security risk by
adhering to industry-accepted best practices. CIS benchmarks are widely used across
various industries to help organizations comply with regulations like PCI DSS, HIPAA, and
others. They provide detailed configuration recommendations, are regularly updated to
address emerging threats, and are designed to be applicable to a broad range of
organizations.

MySQL Configuration Guidelines and Recommendations covering:

• OS
• Network
• File Permissions
• Updates and Patches
• Auditing and Logging
• Authentication
• High Availability (HA) and Disaster Recovery (DR)

Prescriptive Guidance for MySQL Enterprise Edition Including:

• Secure baseline for security auditing
• Risk explanation
• Impact assessment
• Steps to perform audit
• How to fix issues detected by auditing
• Cross-references to related resources

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

13

• Continuously benchmark updates
• Participation with CIS MySQL security community

Recognized as a Secure Configuration Standard by:

• DoD Cloud Computing Security Recommendation Guide (SRG)
• Payment Card Industry Data Security Standard (PCI DSS)
• Health Insurance Portability and Accountability Act (HIPAA)
• Federal Information Security Management Act (FISMA)
• Federal Risk and Authorization Management Program (FedRAMP)
• National Institute of Standards and Technology (NIST)
• And more - for a complete list, see CIS Mapping and Compliance

About MySQL CIS Benchmark for MySQL Enterprise Edition
Download: CIS Benchmark for MySQL Enterprise Edition

DISA STIG for MySQL Enterprise Edition
The Defense Information Systems Agency (DISA) develops Security Technical
Implementation Guides (STIGs) for the U.S. Department of Defense (DoD). The DISA STIG
for MySQL Enterprise Edition provides highly specific security configuration requirements
for DoD systems. These STIGs are very rigorous and are designed to meet the stringent
security needs of military and government environments. They are very detailed and
prescriptive, are primarily focused on DoD requirements, and tend to be more rigid than
CIS Benchmarks. Despite not always being mandated for compliance, DISA STIGs are
publicly accessible and frequently employed for security assessments.

DISA STIGs Include a Description of Requirements Explaining:

• What are the related security risks and vulnerabilities?
• Is a vulnerability applicable to a product?
• Whether the product has inherent protection or if you need to check the product

settings.
• Which settings to inspect and how - pass (protected) or fail via a series of checks.
• Changes needed when a check fails.
• Other mitigating actions to put in place to minimize security risk.
• Use of additional products to provides added protection.

About MySQL DISA STIG for MySQL Enterprise Edition>>
Download: DISA STIG for MySQL Enterprise Edition>>

https://www.cisecurity.org/cybersecurity-tools/mapping-compliance
https://www.mysql.com/products/enterprise/cisbenchmark.html
https://www.cisecurity.org/benchmark/oracle_mysql/
https://www.mysql.com/products/enterprise/stig.html
https://public.cyber.mil/stigs/downloads/

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

14

MySQL Security Guidelines
The MySQL Security Guidelines provides basic security guidelines for users of MySQL. It
stresses the importance of securing the entire server host, not just the MySQL server,
against various attacks. The guide includes recommendations such as controlling access
to MySQL with GRANT and REVOKE statements, choosing strong passwords, using
firewalls, auditing, and employing data encryption and encrypted protocols like SSL or SSH
for data transmission.

Learn more about the MySQL Security Guidelines>>

Software Upgrade Management
Product upgrades are essential for maintaining robust security. Regular upgrades, at a
minimum quarterly, are released by MySQL to address bugs and security vulnerabilities,
including:

• Vulnerable SQL statements, buffer overflows, and SQL injections.
• Vulnerabilities in database clients, JDBC drivers, and third-party code.
• Weaknesses in cryptography, networking, and remote code execution.

Timely upgrades are critical for a strong security posture. Neglecting upgrades exposes
organizations to known vulnerabilities.

Protecting Sensitive Data

Data is critical for organizational success, driving everything from customer relations to
strategic decisions. However, its growing volume and sensitivity make it a prime target for
theft, demanding robust protection. Database security effort should align with both
regulatory requirements and the potential business risk of a data breach.

Sensitive data can be classified into categories such as identification, biographic,
healthcare, financial, employment, and academic data. Here are a few examples of
categories and types of sensitive data.

https://dev.mysql.com/doc/refman/8.4/en/security-guidelines.html

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

15

 Examples of sensitive data categories and types

MySQL Enterprise Audit can be used to determine:

• Activity on Sensitive Data: Collects details about activity on sensitive data by all
users

• Activity on Sensitive Data by Privileged Users: Collects activity on sensitive data
by privileged users

Authentication

Sometimes it’s best to start with what NOT to do.

• Do NOT Store Passwords in plain text:

o While password-based authentication requires users to provide passwords,
applications and automated processes cannot.

o Historically, embedding credentials in code or scripts was common but
insecure, increasing attack surfaces and requiring constant script updates for
password changes.

• Do NOT share accounts and passwords:

o Shared accounts create significant security risks.
o When errors, sabotage, or data breaches occur, pinpointing responsibility

becomes impossible.
o Despite organizational policies against them, shared accounts remain

prevalent, even among highly privileged users like developers and database
administrators (DBAs).

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

16

DBAs often misuse the root administrator account, a practice that should be strictly
prohibited for routine tasks. Instead, each DBA should have a personalized account with
specific roles and privileges, tailored to their responsibilities. This could be a standard DBA
role or a more granular set of permissions.

Similarly, application administrators and developers should avoid shared accounts. While
they may require access to application schemas for maintenance, they should use
individual credentials rather than the application service account.

Strong Passwords

Given the continued reliance of legacy applications on password authentication, it is
imperative to establish and enforce stringent password policies. These policies should
include, but not be limited to, requirements for password length, complexity, rotation, and
history. MySQL provides the mechanisms necessary to implement such policies.

Centralized User Management

Managing database user identities is complex. Employee turnover and role changes create
challenges, especially with numerous users or multi-database access. In practice,
dormant accounts often persist, becoming prime targets for unauthorized access.
MySQL supports centralized user management to address this. By managing users and
credentials outside the database, typically via directories like LDAP, Microsoft Active
Directory or cloud identity services such as Oracle Cloud Infrastructure IAM, Okta, or
Microsoft Entra ID, organizations can enforce consistent policies and streamline the user
lifecycle.

Centralized services simplify onboarding, offboarding, and role adjustments. Many,
particularly cloud providers, offer multi-factor authentication. Even beyond passwords,
centralized management integrates with authentication methods like Kerberos, OpenID
Connection, PKI certificates and multi-factor authentication providing robust security.

Beyond internally managed MySQL User password authentication. MySQL Enterprise
Edition offers a range of advanced authentication options:

• MySQL OpenID Connect (OIDC) Authentication:
o Leverages the OIDC protocol, built on OAuth 2.0, for secure authentication.
o Enhances security by eliminating the need to manage passwords directly,

mitigating credential-based breaches.

• MySQL External Authentication for LDAP:

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

17

o Integrates with LDAP servers for user authentication.
o Provides granular control over user and group access through LDAP

specifications.
o Supports various authentication methods, including username/password,

SASL, and GSSAPI/Kerberos.

• MySQL External Authentication for Windows:
o Utilizes native Windows services for client connection authentication.
o Allows users logged into Windows to connect to MySQL without additional

passwords, based on their environment's token information.

• MySQL Native Kerberos Authentication:
o Enables integration with existing Kerberos infrastructure for single sign-on

capabilities.
o Supports both MIT (GSSAPI) and Microsoft (SSPI) Kerberos implementations

(available in MySQL Enterprise Edition).

• MySQL External Authentication for PAM:
o Integrates with Linux Pluggable Authentication Modules (PAMs) to support

diverse authentication methods, such as Linux passwords and LDAP
directories.

• MySQL WebAuthn Authentication:
o Supports FIDO2 Web Authentication (WebAuthn) for secure authentication

using devices like smart cards, security keys, and biometric readers.

• MySQL Multifactor Authentication (MFA):
o Requires users to provide multiple verification factors, enhancing security

against attacks targeting usernames and passwords.
o Strengthens organizational security against cybercrime by allowing the

combination of up to three authentication methods.

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

18

Advanced Authentication Options for Centralized User Management

Enforcing Security for Business Users

Business users cannot be solely relied upon to adhere to complex security guidelines.
Database systems must enforce these policies to protect users. Key security measures
include:

• Prioritize strong authentication: Move beyond passwords by implementing token-
based authentication from cloud identity services, Kerberos, OpenID Connect, or
PKI certificates.

• Enforce robust password policies (if necessary): If passwords are required,

implement stringent profiles that dictate password strength, inactivity timeouts,
and failed login limits.

• Centralize user management: Utilize identity services like Active Directory to

minimize orphaned accounts resulting from employee turnover or role changes.

Securing Database Administrator (DBA) Accounts

DBA accounts, with their extensive database access, are prime targets for attackers.
Implement these critical security measures to mitigate risks:

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

19

• Enforce Individual Accounts and Strong Authentication:

o DBAs must use named accounts with robust authentication methods like
cloud identity service tokens, PKI certificates, or Kerberos. Shared or default
accounts (e.g., SYSTEM) are strictly prohibited.

• Implement sudo for OS Access:
o When DBAs require operating system access, use sudo to maintain an audit

trail of individual actions. Ensure each DBA has a personal OS account.

• Restrict Direct Database Owner Access:
o DBAs connecting via the database server's OS must use their own named

accounts, not the database owner's.

• Implement Role-Based Access Control:
o For organizations with specialized DBA teams (backup/recovery,

performance tuning, security), use tailored administrator roles with minimal
necessary privileges, rather than granting the default admin (super) role.

Protecting application accounts

Application service accounts, possessing extensive application privileges and often
maintenance rights, are highly vulnerable. Implement these security best practices:

• Enforce Strong Authentication and Connection Restrictions: Employ robust
authentication methods like cloud identity service tokens or PKI certificates. Utilize
controls such as MySQL Enterprise Firewall and user@host to restrict connection
origins for these accounts.

• Utilize Secrets Management: Store credentials in a secrets manager like Oracle
Key Vault, enabling applications to retrieve them via API calls. Avoid hardcoding
credentials or storing them in clear-text files on application servers, which are more
susceptible to compromise.

• Implement Dual Password for Seamless Rotation: Employ dual password
functionality to minimize application outages during password rotation. This allows
simultaneous use of old and new passwords until all application servers are
updated.

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

20

• Promote Individual Administrator Authentication: Application administrators
should use their own credentials rather than the application service account.

• Implement Role-Based Privilege Management: Assign specific roles and utilize
SET ROLE for privilege de-escalation and escalation, adhering to the principle of
least privilege.

Controlling Database Access

Access controls are fundamental for regulating data interactions, determining who can
access what data and what actions they can perform. By limiting accounts to the precise
capabilities required for their functions, access controls mitigate the significant risk posed
by overprivileged users. This practice is essential for enforcing regulatory compliance and
preventing data theft, destruction, or misuse.

Recognizing the critical nature of access control, MySQL Database provides a
comprehensive suite of mechanisms to manage database access.

A database privilege grants the authorization to perform specific operations on data
objects or execute specific statements. MySQL Database offers four primary privilege
types: object, database (aka schema), and administrative. These privilege types provide
progressively broader scopes of authorization.

• Administrative privileges enable users to manage operation of the MySQL server.
These privileges are global because they are not specific to a particular database.

• Database privileges apply to a database and to all objects within it. These privileges
can be granted for specific databases, or globally so that they apply to all
databases.

• Privileges for database objects such as tables, indexes, views, and stored routines
can be granted for specific objects within a database, for all objects of a given type
within a database (for example, all tables in a database), or globally for all objects of
a given type in all databases.

Leveraging Roles for Efficient Privilege Management

Roles are named collections of privileges, designed to streamline privilege management.
By grouping object, schema, and system privileges into task-based roles, administrators
can efficiently grant or revoke identical privileges to multiple users. Roles can also be
hierarchically structured, allowing for the aggregation of task roles into broader

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

21

organizational roles. This hierarchical approach simplifies the assignment of complex
privilege sets.

Sample role and privilege hierarchy

Simplifying User Management with Database Roles

Assigning multiple database roles to a single user streamlines user management. Instead
of granting individual privileges, new employees can be assigned roles corresponding to
their positions, simplifying onboarding. Similarly, when organizational changes occur, task
roles can be efficiently reassigned, eliminating the need to manage individual privileges or
redefine organizational roles. This approach significantly simplifies privilege management
during organizational transitions.

Who can do what in your database?

One of the most critical components of a MySQL Database is its data dictionary (mysql),
information schema, and performance schema. These contain tables and/or views that
provide information about the database, including definitions (metadata) about all objects
and users.

valuating MySQL database permissions is crucial for maintaining security. Here's a
breakdown of how you can approach this, combining common practices and key
considerations:

Understanding MySQL Privilege Levels

• Global Privileges:

o These apply to the entire MySQL server.
o Examples: CREATE USER, SHUTDOWN, GRANT OPTION.

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

22

• Database Privileges:
o These apply to all objects within a specific database.
o Examples: CREATE TABLE, SELECT, INSERT.

• Table Privileges:
o These apply to a specific table within a database.
o Examples: SELECT, UPDATE, DELETE.

• Column Privileges:
o These apply to specific columns within a table.
o Examples: SELECT, UPDATE.

• Stored Routine Privileges:
o These apply to stored procedures and functions.

• Proxy Privileges:
o These allow one user to act as another user.

Information_Schema Tables containing security metadata include:

Information Schema Table Description
APPLICABLE_ROLES Roles that are applicable for the current user.
ROLE_COLUMN_GRANTS Column privileges for roles that are available

to or granted by the currently enabled roles.
ROLE_ROUTINE_GRANTS Routine privileges for roles that are available

to or granted by the currently enabled roles.
SCHEMA_PRIVILEGES Schema (database) privileges.
TABLE_PRIVILEGES Table privileges.
USER_PRIVILEGES Global privileges.

In addition to the above, the SHOW GRANTS command displays the privileges and roles
that are assigned to a MySQL user account or role, in the form of GRANT statements.

The Persistent Threat of SQL Injection

SQL injection remains a critical security concern, consistently ranking among OWASP's
top web application vulnerabilities since 2004. This long-standing vulnerability persists
because it exploits applications exposed to a wide range of attackers, including those on
the internet. Despite extensive developer training and automated code scanning tools,
SQL injection continues to plague data-driven web applications, highlighting the ongoing
challenge of eliminating this fundamental security flaw. SQL injection poses a dual threat:
direct database compromise (data corruption, destruction, exfiltration) and lateral
network infiltration.

https://dev.mysql.com/doc/refman/8.4/en/grant.html

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

23

SQL injection is an application vulnerability that permits the insertion of malicious SQL
code into database queries.

Hacker’s Attack Workflow

Strategies for Mitigating SQL Injection Attacks

Effectively preventing SQL injection is challenging. While input validation is a fundamental
security practice, developer errors and limitations in code reviews and automated scans
can introduce vulnerabilities. Furthermore, legacy applications often lack accessible
source code for remediation.

Web Application Firewalls (WAFs) offer a layer of protection by filtering suspicious HTTP
traffic. However, their reliance on signature pattern matching limits their effectiveness
against zero-day exploits and complex SQL injection techniques, as they lack deep
payload analysis and SQL context awareness.

Database firewalls provide an additional defense by filtering database traffic before it
reaches the database itself. A comprehensive security strategy incorporates both WAFs
and database firewalls, creating a multi-layered approach to blocking SQL injection
attempts at both the application and database levels.

MySQL Enterprise Firewall: Database-Resident SQL Protection

MySQL Enterprise Firewall mitigates SQL injection and other web application attacks
targeting data-driven applications. Integrated directly within the MySQL Database, it

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

24

eliminates the need for external installations or network configurations. Operating close to
the data, the firewall cannot be bypassed. It inspects all incoming SQL statements,
regardless of origin, encryption, or transmission method, ensuring only authorized SQL
from trusted sources is executed. MySQL Enterprise Firewall employs an allow-list
approach. The allow-list can be created by putting the firewall in RECORDING mode (or
manually as well). Once the list has been created the firewall can either block SQL not
included in the allow list in PROTECTING MODE or collect SQL not in the allow-list in
DETECTING MODE.

MySQL Enterprise Firewall protects your data by blocking unauthorized database activity.

The Importance of Sensitive Data Masking

Organizations manage vast amounts of sensitive data, including PII, financial records,
healthcare information, and proprietary data. Limiting exposure to users who don't require
access is a significant challenge. However, leveraging application data outside its primary
application is often crucial for various business functions. These include efficient
application development and testing, insightful marketing and customer service analysis,
and effective call center operations. While these use cases offer clear business benefits,
they must be balanced with the imperative to protect sensitive information.

Data masking addresses this challenge by modifying sensitive data, rendering it useless to
data thieves while preserving its utility for legitimate purposes. This mitigates the risk of
data breaches and safeguards customer and employee privacy. By masking data such as
credit card numbers, taxpayer identifiers, sales figures, and other personal or proprietary
information, organizations can confidently utilize their data while maintaining security. For
instance, testing a point-of-sale application might require realistic inventory and store

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

25

information but not actual customer details. In such cases, fictitious yet realistic customer
data can be substituted.

Static Data Masking Use Cases:

• Reduce Breach Risk & Compliance: Limit sensitive data storage, potentially
excluding systems from GDPR/CCPA.

• Secure Dev/Test: Enable realistic data use without exposing sensitive information,
meeting regulatory needs.

• Save Time & Costs: Use masked production clones, avoiding artificial test data
creation.

• Secure Data Sharing: Protect sensitive data for third-party analytics or vendors,
using reversible masking when needed.

• Privacy in Training: Allow realistic data practice without exposing private details.

MySQL Enterprise Masking and De-Identification addresses these challenges by providing
a library of anonymization and masking formats, functions and dictionary transformations,
and data deny listing. Sensitive information, such as credit card numbers, national
identifiers, and other personally identifiable information (PII) can easily be masked with an
out-of-the-box library of masking, randomization, dictionary, and deny listing capabilities.

Masking data in non-production environments can help to keep Development, Test and
other environments

Data Encryption and Key Management

The Critical Role of Encryption

Even the strongest security measures are vulnerable if circumvented. Consider a physical
analogy: instead of breaching a fortified front door, thieves often seek weaker entry points
like back doors or unlocked windows. Similarly, while database authentication and
authorization secure the "front door" by restricting access to authorized users, attackers
may attempt to bypass these controls and directly target the data.

Encryption addresses this by rendering data unintelligible to unauthorized access,
effectively transforming the challenge of securing vast amounts of data into the simpler
task of protecting a smaller encryption key. Without the key, encrypted data is useless to
attackers. Furthermore, encryption is frequently mandated by regulatory requirements and
security standards for sensitive or personally identifiable information.

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

26

Prioritize Encryption to Protect Data Beyond Database Controls

Encryption safeguards data against attacks that bypass database access controls.
Attackers can intercept unencrypted network traffic, directly access database files via
privileged OS accounts, or steal unencrypted backups stored locally, remotely, or in the
cloud. Since these attacks occur outside database sessions, encryption is essential to
render data unreadable without a valid database connection.

Encrypting MySQL Database Connections (Data in Motion)

MySQL Database supports industry-standard Transport Layer Security (TLS) for encrypting
network data. TLS provides confidentiality, integrity, and server authentication, with
optional client authentication. It's essential for PKI certificate authentication.

TLS can be configured for server-authenticated or mutually authenticated (mTLS) modes,
using certificates stored in system stores or MySQL wallets. Self-signed or CA-issued
certificates are supported.

TLS can operate in FIPS mode for stricter encryption control. During connection, the server
and client negotiate cipher suites, typically selecting the strongest mutual algorithm.
Specific algorithms can be enforced.

TLS 1.3 optimizes connection negotiation, reducing overhead and improving speed
compared to TLS 1.2. Its optimized cipher suites provide stronger cryptography with
slightly better performance.

Transparent Data Encryption

TDE enhances security by encrypting data at rest, mitigating bypass attacks. The
encryption and decryption processes are seamless for authorized database sessions. Data
is automatically encrypted before storage and decrypted upon retrieval, presenting
plaintext to authorized users and applications.

Direct OS or storage access reveals only encrypted data, and backups are encrypted,
safeguarding against data theft.

Authorized users continue normal database operations; TDE works in conjunction with
existing access control policies, ensuring unauthorized access is denied.

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

27

How Hackers can copy files and how encryption thwarts attacks

TDE's Two-Tier Key Architecture

Encryption security hinges on key secrecy. TDE employs a two-tier key system: a master
encryption key (MEK) for the database and unique data encryption keys (DEKs) for
tablespaces or tables. This architecture, mandated by regulations like PCI-DSS, ensures
key separation and facilitates secure key rotation and archiving, crucial for protecting
encrypted data.

Encrypt Data-at-rest Using Transparent Data Encryption

Encryption is clearly an important and affective data protection technique. One of the
challenges to organizations while implementing data encryption is ensuring that not only is
the data in tables encrypted, but also in backups. Locating and encrypting data from all
these sources can be a resource-intensive task.

MySQL Transparent Data Encryption (TDE) addresses this challenge by encrypting the data
in InnoDB tablespaces, redo, and undo logs, as well as MySQL Enterprise Audit Logs
directly in the source (database layer). TDE encrypts data automatically when written to
storage including backups. Encrypted data is correspondingly decrypted automatically
when read from storage. This automatic encryption-decryption capability at the database
layer makes the solution transparent to database applications. Access controls that are
enforced at the database and application layers remain in effect. SQL queries are never
altered, and hence no application code or configuration changes are required. MySQL
Enterprise Edition comes pre-installed with TDE and can be enabled easily.

Another concern when encrypting data is the performance impact on database and
application operations. The encryption and decryption process are fast as TDE leverages

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

28

MySQL Database caching optimizations and utilizes CPU-based hardware acceleration
available on various chipsets.

Centrally Manage Encryption Keys Using Key Vaults

Centralization helps controllers enforce same security controls everywhere and be able to
take immediate and quick actions in case of a breach. Key Managers such as Oracle Key
Vault (OKV) or other Key Vaults supporting KMIP protocol provide centralized control over
data encrypted with Transparent Data Encryption (TDE). TDE provides two-tier encryption
key management with data encryption keys and master encryption keys. The master
encryption keys can be centrally controlled and managed using Key Vaults. Key Vaults
provide the ability to suspend access to the master key and render the encrypted data
unintelligible in the event of a data breach or suspicious activity. Smaller organizations
with few servers may wish to also review use of the MySQL Encrypted Keyring file or other
options for key protection.

Oracle’s OKV is a software appliance that enables users to quickly deploy encryption and
other security solutions by centrally managing not only MySQL encryption keys, but much
more - Oracle wallets, Java key stores, application keys, credential files, etc. MySQL
supports various key vaults – whether Oasis KMIP complaint or accessible via HTTPS
protocols.

Oasis KMIP protocol implementations:

• Oracle Key Vault
• Gemalto KeySecure
• Thales Vormetric Key Management Server
• Fornetix Key Orchestration
• Townsend Alliance Key Manager
• Entrust KeyControl

MySQL Enterprise TDE also supports HTTPS based APIs for Key Management such as:

• Oracle Cloud Infrastructure Vault
• Hashicorp Vault
• AWS KMS

Importance of Database Activity Monitoring

Database activity monitoring is crucial for detecting malicious behavior, ensuring
regulatory compliance, and supporting incident investigations. Audit trails provide
essential records for accountability and security.

https://www.oracle.com/database/technologies/security/key-vault.html
https://safenet.gemalto.com/data-encryption/enterprise-key-management/key-secure/
https://www.thalesesecurity.com/products/key-management
https://www.fornetix.com/our-products/
https://www.townsendsecurity.com/product/encryption-key-management-mysql
https://www.entrust.com/products/key-management/keycontrol
https://www.oracle.com/security/cloud-security/key-management/
https://www.hashicorp.com/products/vault/
https://aws.amazon.com/kms/

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

29

Key benefits include:

• Malicious activity detection and investigation.
• Deterring misconduct.
• Non-repudiation (proof of actions).
• Regulatory compliance auditing.
• Monitoring privileged user activity (DBAs, analysts).
• Troubleshooting connection issues.
• Data recovery assistance.

Prioritize Effective Activity Monitoring

While conceptually simple, effective database activity monitoring requires understanding
its capabilities and options to avoid performance impacts and excessive management
overhead. Organizational security mandates auditing privileged user activity, login events,
and sensitive data access. The aim is to capture essential data while minimizing disruption
to database operations.

Strategic Database Auditing

Auditing all database activity is impractical due to storage costs, performance impacts,
and the risk of obscuring malicious events. Instead, implement selective audit policies
focused on significant events.

Effective policies prioritize:

• Security-relevant events
• Privileged user activity
• Sensitive Data Access

This approach minimizes unnecessary audit records, enabling faster and more reliable
threat detection, while ignoring routine activity from trusted sources.

Effective Audit Data Management & Utilization

Collecting audit data is insufficient; it must be actively used. Centralized repositories are
crucial for managing audit data from numerous databases, enabling analysis, alerting, and
reporting. Solutions like Oracle Data Safe and AVDF consolidate audit data, offering
features like:

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

30

• Centralized, secure repository.
• Near real-time monitoring and alerting.
• Security and compliance reporting.
• Forensic analysis support.
• Historical data storage and retrieval.
• User privilege change tracking.
• Compliance demonstration for auditors.

Audit data management involves:

• Controlling storage consumption.
• Protecting data integrity.
• Meeting retention requirements.

Fortunately, MySQL Enterprise Edition audits provide storage size limits, data encryption
for data integrity, and retention policies.

Centralization allows for data removal from source databases and implements lifecycle
policies.

Effective utilization includes:

• Anomaly detection.
• Compliance audits.
• Troubleshooting.

Centralized repositories such as Oracle Audit Vault, OCI Log Analytics, and others -
facilitate forensic analysis, alerting, and reporting, supporting regulatory compliance
(GDPR, CCPA, PCI-DSS, HIPAA, etc.) by providing access records and retention
management.

Putting it All Together - MySQL Reference Architectures for Security

By applying the defense-in-depth strategies outlined in this guide, you can establish
MySQL Reference Architectures for Security, ensuring robust data protection and risk
mitigation for your MySQL Databases.

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

31

MySQL Enterprise Security Overview

Tailored Security Implementation

Implement security controls based on data sensitivity, business criticality, and threat
environment. Categorize systems (Bronze, Silver, Gold, Platinum) by sensitivity. Bronze:
internal portals. Silver: business transactions. Gold: regulated data (GDPR, CCPA, etc.).
Platinum: highly sensitive data (sales forecasts, IP).

Apply layered controls per category. All levels require secure configuration and patching to
prevent breaches. Monitor privileged user activity across all systems.

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

32

MySQL Reference Architectures for Security

Tiered Security Measures for Data Protection

Each level is additive from Bronze up to Platinum.

• Bronze Databases: Require robust security configurations and timely security
patching. Failure to maintain these standards exposes the system to vulnerabilities,
potentially allowing attackers to establish command-and-control or use it as a
staging area for data exfiltration. Furthermore, comprehensive monitoring and
auditing of privileged user activities are essential to detect unauthorized
configuration changes or privilege escalations.

• Silver Databases: Implement network encryption, OS-level data protection, and
secure non-production environments. Enforce strong authentication, encryption (in
transit and at rest), and data masking.

• Gold Databases: Add privileged user access restrictions, SQL activity monitoring,

and PII/PCI/PHI data protection.

• Platinum Databases: Apply all Gold controls, plus server access restrictions, real-
time SQL monitoring, SQL injection prevention, and comprehensive audit policies
for forensic analysis.

WHITE PAPER | MySQL Reference Architectures for Security
Copyright © 2025, Oracle and/or its affiliates. All rights reserved.

33

Implementation can be control-focused (global application) or system-focused (critical
systems first), or a hybrid approach. Develop a strategy aligning with business objectives,
resources, and time to optimize security investments.

Conclusion

To effectively safeguard our assets, a strategic approach is required. This strategy must
integrate business goals, available resources, and realistic timelines. By doing so, we can
implement appropriate security measures for all data, ensuring a strong return on our
security investment.

Additional Resources

MySQL Enterprise Edition : Product Information
http://www.mysql.com/products/enterprise

MySQL Enterprise Edition: Documentation
https://dev.mysql.com/doc/index-enterprise.html

MySQL Customers and Case Studies
http://www.mysql.com/customers

http://www.mysql.com/products/enterprise
https://dev.mysql.com/doc/index-enterprise.html
http://www.mysql.com/why-mysql/case-studies/

