
MySQL
at Booking.com

Nicolai Plum



Booking.com



100M
monthly active 
app users

155,000
destinations around the world

Car hire available in 140+
countries and pre-booked taxis in 

over 500 cities across 120+
countries

232M+
verified guest 
reviews and 

24/7
customer service 

in44
languages and 
dialects

Since 2010, 
Booking.com has 
welcomed

4.5B+ 
guest arrivals

28M
total reported 
listings 
worldwide

6.6M
options in homes, 
apartments and 
other unique places 
to stay

30
different types of 
places to stay,
including homes, 
apartments, B&Bs, 
hostels, farm stays, 
bungalows, even 
boats, igloos and 
treehouses

140 offices in 70 countries over

5,000 employees in Amsterdam



MySQL for 18+ years: what?
● Core transaction processing
● Payments & Billing
● Front-end content
● Partner and Customer Support
● Internal tools and controlplanes



MySQL Transaction Processing
● No transactions == no revenue
● No payments == less revenue
● Transactions: the critical MySQL use



MySQL analytics
● Near real-time data analytics
●Monitoring, reputation/security

● Medium-scale (1TB) analytics on 
transaction data

● … anything more is for Big-data systems
● Analytics support transaction business



MySQL for 18+ years: why?
● Read scale-out
● Speed 
● Good reliability
● Easy, flexible administration



MySQL – Read scale-out
● Cross-AZ (AWS/OCI equivalent: 

Cross-region)
● >100 replicas in some chains chain 
● Service discovery based on Zookeeper
● Online Travel is very read-intensive



MySQL (Classical) Replication



MySQL Group Replication



MySQL - Speed
● <1ms point query read
● Range queries are fast
● Working dataset in memory
●Memcache-like speed
● Rich, individualised content is not cacheable

● ~2000 write qps (non-Group-Replication)



MySQL On Any Platform
● Managed managed service
● Managed cloud instances
● Managed containers
● Hybrid multi-cloud
● Same reliability, user interface, controls



Managing MySQL at scale:
Relentless automation

● New databases
● Replacing broken instances
● Patching and upgrades
● Autoscaling pools according to user needs
● … across thousands of instances.
● On every platform or managed service



Replace Break/Fix
with

Preventative Maintenance



Managing MySQL at scale:
Technology for On-Premise

● Provisioning infrastructure
● Puppet, Ansible, bespoke management 

controlplane
● Authentication, Authorisation, Audit tools & policies
● Self-healing systems & topology (Orchestrator)
● Monitoring, Alerting, SLO reporting, Incident 

management processes



Managing MySQL at scale:
Technology for Cloud

● Provisioning & Service API Interfaces
● IAM, audit, policies
● Self-healing system & topology
● Monitoring, Alerting, SLO reporting, 

Incident management processes



Managing MySQL at scale:
It’s Databases all the way down!

● Controlplane uses 
MySQL?

● … which must never 
break?

● … or we have a 
circular repair 
dependency?



Unbreakable database?
● Must be Non-Stop in the short term
● Clustered databases keep working after 

single instance failures (without 
intervention)

● Guarantee that automation databases will 
be up as long as automation maintains 
them in the background



Experience (general MySQL)
● Single instance rarely crashes
● InnoDB data durability is bulletproof
● Replication can break, can usually be fixed

● Sometimes requires heroics
● Replication delay requires full-stack management
● Grant management commands scale badly
● Downgrade is impossible



Experience (Group Replication)
● When it works, it’s great – Non-Stop MySQL
● When it breaks, it is complex to fix
● MySQL Shell auto-repair is excellent
● Quite a few bugs, some serious (cluster-wide failures)
● Upgrade is awkward. Downgrade is impossible.
● Cluster member changes disturb whole cluster
● Protocol and some config changes not possible online
● Latency increase, QPS decrease (compared to single 

master)



Cluster & Topology Reliability
● Service discovery for clients

● Writer and readers
● Auto repair

● Rejoin failed members, or replace missing members
● Upgrades & patches

● Switch to new master/primary, add new, remove old.
● Topology management: re-attach replicas



System Reliability Engineering
● What SLOs do you need?

● How about: Write 99.95% Read 99.99%
● Topology changes are Frequent
● GR member/replica attach/detach must be low impact
● Connection counts can be very high, >10k

● Not every stack has connection pool
● External connection pooling: ProxySQL sidecar

● MySQL Community version allows code inspection and 
commonality across platforms
● Plugins for auditing and custom behaviour



SRE Agility
● Automated progressive upgrades
● Error & performance observability
● Testing methods to bound the risk of new 

deployments



Observability – tracing
● Objective: full-stack tracing
● In place…
● … except Database
● No Open Tracing support
● Need to trace all database activity from an 

example business action
● Need hooks to inject tracing ID from application, 

and send tracing data to Observability systems



Data operations online
● Online (not Instant) DDL blocks replication
● Large tables need table rewrite to reclaim space

● No background table free space compaction and disc space 
reclamation

● InnoDB compression is limited
● Can’t compress data in background
● Efficiency could be better
● Filesystem holes cause management problems

● Need LSM storage for 5x space efficiency, still has to be fast 
on small select/update



MySQL Binary Logging
● Binlog is essential, but a cost overhead
● Binlog compression is excellent
● GTID greatly improves replication reliability
● No standard binlog consumer library means 

irregular support for any of this in external 
applications



Dataset scaling
● No future path for dataset bigger than one 

instance
● Constant compute power and growing 

data is unsustainable
● A long-term pain point
● Strong reason to use other databases



No very good data scale-out products
● MySQL NDB Cluster

● Limited SQL, complex, we crashed the cluster
● MySQL Heatwave

● Full SQL, limited resilience & deployment options
● Vitess

● Very limited SQL, complex operations
● TiDB

● Less limited SQL, complex, full-featured, maturing
● CockroachDB

● Less limited SQL, quite promising



nicolai.plum@booking.com

?


